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Abstract

A classical iteration procedure is applied to nonlinear oscillations of conservative single-degree-of-freedom systems with
odd nonlinearity. With the procedure, the analytical approximate frequency and the corresponding periodic solution, valid
for small as well as large amplitudes of oscillation, can be obtained. Two examples are given to illustrate the accuracy and
effectiveness of the method. Another advantage of this classical iteration approach is that it also works if the linear part of
restoring force is zero.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The most common methods for constructing approximate analytical solutions to the nonlinear oscillator
equation are the perturbation methods. These methods include the Lindstedt—Poincaré method [1-4], the
method of Krylov—Bogoliubov—Mitropolshy [1] and the method of multiple scales [1-4], which apply to
weakly nonlinear cases only. The method of harmonic balance [1,5] is capable of producing analytical
approximations to the frequency and periodic solution of nonlinear oscillations, valid even for rather large
values of oscillation amplitude. However, it is usually difficult to give high-order analytical approximations to
the solution by applying the method. The main purpose of this paper is to show that a classical iteration
procedure [6] is valid for strongly nonlinear oscillations of conservative single-degree-of-freedom systems.

2. Solution method

Consider a nonlinear oscillator modeled by

X+/(x)=0, x(0)=4, x(0)=0, (1)
where overdots denote differentiation with respect to time ¢, and f(x) satisfies the condition
J(=x) = =f(x). 2
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Supposing that the natural frequency of Eq. (1) is w, which is unknown to be further determined, Eq. (1) can
be rewritten as [6—10]

¥+ o’x = o*x —f(x) =1 g(x), x(0)=4, x(0)=0. (3)
The linearized equation of Eq. (1) is
¥+w*x=0, x(0)=4, x(0)=0. 4)

Comparing Eq. (1) with Eq. (4), we see that even though f{x) is not ““small”, the function g(x) = w’x — f(x)
is ““small”. Then the left-hand side of Eq. (3) is linear and the term ¢g(x) on the right-hand side is a “small”
function. That is why we prefer Eq. (3) to Eq. (1).

The iteration scheme is [7]

jé/(4—1 + ('sz/(-‘rl = g(xk)a xk(o) = Aa Xk(o) = 07 k = 07 1729 R} (5)
where the input or starting function is
xo(?) = A cos wt. (6)

This procedure can be performed to any value of k desired. However, for most problems the calculations
can be stopped at k = 2 [7]. Timoshenko et al. [6] have applied this technique to the Duffing equation, but they
only gave the first iteration result. In the next section, the details of this classical procedure will be illustrated
by applying it to two examples.

3. Examples

Example 1. Consider the Duffing equation
F+oix+ex® =0, x(0)=4, x(0)=0, (7)
where wy>0 is a constant and ¢>0 is a parameter. For this example, /(x) = wjx + &x*. Eq. (5) gives
Seat + 0P xpgr = (08 — 0f)xx — exp. (8)

The first iteration of starting function given by Eq. (6) leads to
. 2 2 2 3 0 1 3
X+ox=(w —a)O—Z,sA A cos wt—ZSA cos 3wt. 9)

The requirement of no secular terms in x;(¢) implies that

0 =) =/ o} + 3e4*/4. (10)

Eq. (10) gives the first approximate frequency of Eq. (7) and the corresponding approximate periodic
solution is

‘A3
x1(f) = Acos wt + ;(cos 3wt — cos wt), (11)
32w?

where the frequency o is given by Eq. (10).
For the second iteration, we have

¥+ 0’xy = (0% — wf)x1 — exy. (12)
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The substitution of x(#) into the right-hand side of Eq. (12) results in

A° 3eA? A°
¥+ wPxy = [(a)z — w(z)) (1 - 382w2> — 84 (1 — 186w2>]Acos ot

A1, 5, 3e4?
+ {8 5 (o —wo)—<1+32w2)]cos 3wt

3¢ 2 45
~ %0 a5 €08 Swt + o(s). (13)
No secular term requires that
2 2 2
) ’ eA 3eA eA
(e _“’0)(1 _32(02) Ty (1 “T6a2) =" (14)
or
25 wieA?  324%
Y (wi+=ed 0 =0. 1
w <w0+328 ) + D) a 0 (15)
Solving Eq. (15) for w yields
1 2 2 4 2. 42 2 44
w=m=g 32w + 2564 + 1/ 1024wy + 14720564 4 43362 4°. (16)

Eq. (16) expresses the second approximate frequency of Eq. (7) and corresponding approximate periodic
solution is

A [ 1 3eA?
x12(f) = Acos wt — 3?2a)2 {8(02 (0 — wf) — (1 e )] (cos 3wt — cos wt)
2 45
(cos Swt — cos wt), 17
1024 10240*

where o is given by Eq. (16).
For comparison, we let wyg = 1. Then Egs. (16) and (17) become

1
©=m =g \/32 +25¢4% + /1024 + 14726 4% + 43324 (18)

and
7eA’ N ded® +3824°
2562 102404

x5(t) = Acos wt + [ (cos 3wt — cos wt)

245
+ W(cos Swt — cos wt), (19)

respectively, which are in agreement with the results in Ref. [8]. The approximate frequency w given by
Eq. (18) is valid for both small and large values of 4> [8]. The exact periodic solution to Eq. (7) (for wg = 1)

is [11]

xe(?) = Aen(wt, k), (20)
where cn(wt,k) is the cosine Jacobian elliptic function, w = v/1 4+ ¢4%, and k = {1/2(1 — (1/(1 +e4?%))).
A comparison of periodic solutions x.(¢), x;(¢) (for wg = 1) and x,(¢) (given by Eq. (19)) is presented in Fig. 1
for: e =1, 4 =10; ¢ =10, A = 100; ¢ = 100, A = 1000; respectively. Fig. 1 indicates that x(¢) and x,(¢) are
close to x,(¢) and x,(f) is more accurate than x;(¢).

Example 2. Consider the nonlinear differential equation [10,12,13]

i+x7=0, x(0)=4, x(0)=0. 1)
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Fig. 1. Comparison of the approximate solutions with the exact solutions to Eq. (7) for: (a) e=1, 4 =10; (b) ¢ =10, 4 = 100;
and (c) ¢ = 100, 4 = 1000.

For this example, f(x) = x'%, and Eq. (5) gives
Fp1 + 0 X1 = 07X — Xll(/3- (22)
The first iteration of the starting function xy(z) = A4 cos wt results in
X1+ w’x; = w?Acos wf — A1/3(cos cot)l/3, x1(0) =4, x;(0)=0. (23)
Using the relation [10]
(cos 0)'/3 = by cos 0 + by cos 30 + - - -, (24)
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where b; = 1.15960, b3 = —0.231919, etc., Eq. (23) can be rewritten as
X1+ ’x) = (sz — b1A1/3) cos wt — b3A'3 cos 3wt
+ (higher order harmonics) = 0. (25)

The requirement of no secular terms in x;(¢) implies that

Vb 1.07685

The corresponding approximate periodic solution becomes

b3A1/3

8w?
0.028994'/3
B

x1(t) = Acos wt + (cos 3wt — cos wi)

= Acos wt (cos 3wt — cos wt). 27

The exact frequency of the periodic motion of Eq. (21) is [14]
_/ml(1/4)  1.07045
S 2/6r(3/44'? 4P
where I'(n) is the Gamma function. Therefore, for any values of A4, it can be easily proved that the maximal

relative error of the approximate frequency given by Eq. (26) is less than 0.6%. Even for large value of 4, x;(¢)
given in Eq. (27) is nearly identical to the numerical solution [10].

, (28)

e

4. Conclusions

A classical iteration procedure has been used to solve nonlinear oscillations of conservative single-degree-of-
freedom systems with odd nonlinearity. With the procedure, the analytical approximate frequency and the
corresponding periodic solution, valid for small as well as large amplitudes of oscillation, can be obtained. The
details of the method have been illustrated by two examples. The iteration procedure can be carried on if
solutions of higher degree of accuracy are required. But when fix) = x®" " V"D Gy = 0,1,2, ..., n<m),
the second iteration is not convenient. The nonlinear problem given in Eq. (21) cannot be attacked by usual
perturbation techniques except the method of harmonic balance.

Another advantage of this classical iteration procedure is that it works even when the linear part of restoring
force is zero, as in Example 2. For Example 1, if wy = 0, Eqs. (8)—(17) are still valid. The same situation is
discussed in detail in Ref. [15].

In Ref. [8], Lim et al. presented the following iteration scheme for Eq. (1):

Frar + 0?xppr = g(xi_1) + g1 — xk1), k=0,1,2,.... (29)

Obviously, Eq. (5) is simpler than Eq. (29), but both of them give the same result for the Duffing equation.
The possibility of further generalizing this classical iteration procedure will be investigated for the case where
the restoring force f(x) is a general nonlinear function of x.
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